My Blog

My WordPress Blog

My Blog

My WordPress Blog

Binomial Distribution

The binomial distribution model deals with finding the probability of success of an event which has only two possible outcomes in a series of experiments. For example, tossing of a coin always gives a head or a tail. The probability of finding exactly 3 heads in tossing a coin repeatedly for 10 times is estimated during the binomial distribution.

R has four in-built functions to generate binomial distribution. They are described below.

dbinom(x, size, prob)
pbinom(x, size, prob)
qbinom(p, size, prob)
rbinom(n, size, prob)

Following is the description of the parameters used −

  • x is a vector of numbers.
  • p is a vector of probabilities.
  • n is number of observations.
  • size is the number of trials.
  • prob is the probability of success of each trial.

dbinom()

This function gives the probability density distribution at each point.

# Create a sample of 50 numbers which are incremented by 1.
x <- seq(0,50,by = 1)

# Create the binomial distribution.
y <- dbinom(x,50,0.5)

# Give the chart file a name.
png(file = "dbinom.png")

# Plot the graph for this sample.
plot(x,y)

# Save the file.
dev.off()

When we execute the above code, it produces the following result −

dbinom() graph

pbinom()

This function gives the cumulative probability of an event. It is a single value representing the probability.

# Probability of getting 26 or less heads from a 51 tosses of a coin.
x <- pbinom(26,51,0.5)

print(x)

When we execute the above code, it produces the following result −

[1] 0.610116

Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.

qbinom()

This function takes the probability value and gives a number whose cumulative value matches the probability value.

# How many heads will have a probability of 0.25 will come out when a coin
# is tossed 51 times.
x <- qbinom(0.25,51,1/2)

print(x)

When we execute the above code, it produces the following result −

[1] 23

rbinom()

This function generates required number of random values of given probability from a given sample.

# Find 8 random values from a sample of 150 with probability of 0.4.
x <- rbinom(8,150,.4)

print(x)

When we execute the above code, it produces the following result −

[1] 58 61 59 66 55 60 61 67
Binomial Distribution

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll to top